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Abstract 

Understanding how and where in the brain sentence-level meaning is constructed from words presents 

a major scientific challenge. Recent advances have begun to explain brain activation elicited by 

sentences using vector models of word meaning derived from patterns of word co-occurrence in text 

corpora. These studies have helped map out semantic representation across a distributed brain network 

spanning temporal, parietal and frontal cortex. However, it remains unclear whether activation patterns 

within regions reflect unified representations of sentence-level meaning, as opposed to superpositions of 

context-independent component words. This is because models have typically represented sentences 

as “bags-of-words” that neglect sentence-level structure. To address this issue, we interrogated fMRI 

activation elicited as 240 sentences were read by 14 participants (9F, 5M), using sentences encoded by 

a recurrent deep artificial neural-network trained on a sentence inference task (InferSent). Recurrent 

connections and non-linear filters enable InferSent to transform sequences of word vectors into unified 

“propositional” sentence representations suitable for evaluating inter-sentence entailment relations. 

Using voxel-wise encoding modeling, we demonstrate that InferSent predicts elements of fMRI activation 

that cannot be predicted by bag-of-words models and sentence models using grammatical rules to 

assemble word vectors. This effect occurs throughout a distributed network, which suggests that 

propositional sentence-level meaning is represented within and across multiple cortical regions rather 

than at any single site. In follow up analyses we place results in the context of other deep network 

approaches (ELMo and BERT) and estimate the degree of unpredicted neural signal using an 

“experiential” semantic model and cross-participant encoding.   

 

 

Significance Statement 

A modern-day scientific challenge is to understand how the human brain transforms word sequences into 

representations of sentence meaning. A recent approach, emerging from advances in functional 

neuroimaging, big data and machine learning is to computationally model meaning, and use models to 

predict brain activity. Such models have helped map a cortical semantic information-processing network. 

However, how unified sentence-level information – as opposed to word-level units – is represented 

throughout this network remains unclear. This is because models have typically represented sentences 

as unordered “bags-of-words”. Using a deep artificial neural network that recurrently and non-linearly 

combines word representations into unified propositional sentence representations, we provide evidence 

that sentence-level information is encoded throughout a cortical network, rather than in a single region.  



Introduction 

Sentence comprehension is known to engage a distributed cortical network spanning temporal, parietal 

and inferior/superior temporal cortex (Lau et al. 2008; Binder et al. 2009). However, how sentence-level 

meaning is constructed from words and represented throughout this “semantic network” remains weakly 

understood. Pioneering studies linked the semantic composition of words to particular brain regions such 

as the anterior temporal lobe (e.g. Baron and Osherson 2011, Bemis and Pylkkänen 2011, Westerlund 

and Pylkkänen 2014, Zhang and Pylkkänen 2015) or mid-superior temporal cortex (Frankland and 

Greene, 2015). However, recent studies suggest a more distributed cortical operation. Word-by-word 

construction of sentence meaning is marked by electrocorticographic activation across distributed cortical 

regions (Fedorenko et al. 2016, Nelson et al. 2017), and electro/magnetoencephalographic 

representations of nouns in-context have been detected in inferior frontal, temporal and inferior parietal 

cortex (Lyu et al. 2019). Relatedly, fMRI studies of sentences/narratives have revealed that distributed 

cortical regions encode similar components of semantic information (Wehbe et al. 2014, Huth et al. 2016, 

de Heer et al. 2017, Anderson et al. 2017a, Yang et al. 2017, Pereira et al. 2018, Deniz et al. 2019) as 

stimulated by words irrespective of their grammatical role/sentence position (Anderson et al. 2019a).   

Whilst fMRI studies strongly suggest that sentence-level semantics are encoded within and across 

multiple cortical regions, they have largely fallen short of exposing unified sentence-level representations 

in one critical respect. To identify semantic information in fMRI, studies usually rely upon models 

representing sentences as superpositions of context-independent words. Because such “bag-of-words” 

models ignore context effects, word order and syntactic structure, it remains unclear whether the fMRI 

representations they capture reflect sentence-level semantics, as opposed to context invariant word 

activation elicited in early-stage comprehension (e.g., Swinney 1979; Tanenhaus et al. 1979; Till et al. 

1988). 

Computational linguistics research has begun to address the limitations of bag-of-words approaches, 

using deep artificial neural networks to create sentence representations reflecting within-sentence 

contexts and word order (e.g. Conneau et al. 2017, Peters et al. 2018, Subramanian et al. 2018, Devlin 

et al. 2019). These models present a new opportunity to characterize how sentence meaning is encoded 

across the cortex. We here exploit these models to test for evidence that representations of sentence-

level meaning are encoded in multiple regions of the semantic network.  

We examined an fMRI dataset scanned as 14 participants read 240 sentences (Anderson et al. 2017a). 

We used a voxel-wise encoding modeling approach to conduct a controlled comparison of how semantic 

models reflecting different sentence characteristics contributed to predicting fMRI activation throughout 

the language network (Fedorenko et al. 2010). Models implemented different “composition functions” that 

combined words into sentences with/without contextual/grammatical/sequential information. Critically, all 



composition functions operated on the same word-level semantic input, modeled by GloVe (Pennington 

et al. 2014). Thus, differences in models’ ability to explain fMRI activation solely reflected the 

characteristics of composition. GloVe approximates word-level meaning using numeric vectors of values 

reflecting how often the modeled word co-occurred with other words across a large corpus of text. Since 

words with similar meanings tend to appear in similar linguistic contexts, they end up with similar vector 

representations.   

To model sentence-level semantics we primarily focused on InferSent (Conneau et al. 2017). InferSent 

is a recurrent non-linear deep network optimized to produce “propositional” sentence representations for 

classifying inter-sentence entailment relationships. InferSent has yielded state-of-the-art performance in 

several natural language processing tasks and in decoding fMRI activation elicited by sentences, albeit 

at a whole brain-level (Sun et al. 2019). We focused on InferSent because: (1) Sentence entailment has 

a close tie to the traditional notion of sentences as propositions. (2) InferSent represents sentences by 

combining word-level models (such as GloVe) that are well established in the neuroimaging literature 

(since Mitchell et al, 2008, Wang et al. 2017, Pereira et al., 2018, Anderson et al. 2019a) with a relatively 

simple deep network architecture. 

We hypothesized that InferSent would predict activation patterns in fMRI data across the semantic 

network that was not accounted for by the baseline models, evidencing that propositional sentence-level 

meaning is encoded throughout this network rather than being localized to a single site. In follow up 

analyses, we tested whether high performance deep networks with more complex architectures and more 

parameters (ELMo, Peters et al. 2018, and BERT Devlin et al. 2018) afforded stronger fMRI predictions. 

Finally, we tested for hitherto unpredicted fMRI signal using an “experiential” behavioral semantic model, 

and cross-participant encoding.  

 

 

 

  



Methods 

<Figure 1> 

Overview 

We reanalyzed an fMRI data set scanned as 14 people read 240 sentences describing everyday 

situations (Anderson et al. 2016a and summarized below). Sentences were 3 to 9 words long and formed 

from 242 different content words. Ten of the participants saw the set of sentences repeated 12 times in 

total, and the remaining 4 participants who attended half the number of visits saw the sentences 6 times. 

Sentence order was randomly shuffled each time. Following standard fMRI preprocessing steps (detailed 

in later sections), each sentence was represented as a single fMRI volume per participant. 

 

In our primary analyses we tested how well fMRI sentence activation patterns could be predicted using 

InferSent-based representations of propositional sentence-level semantics comparative to a series of 

baseline models (incl. bag-of-words) that reflected simple rule-based strategies for combining word-level 

semantic representations into sentences (Figure 1). We additionally included three other control models 

in the analyses that captured the grammatical structure and the visual appearance of sentence stimuli. 

Prediction was implemented using voxel-wise encoding modeling with ridge regression (Hoerl and 

Kennard, 1970) in a leave-one-sentence-out nested cross-validation framework. All semantic sentence 

models in our primary analyses (InferSent and the baseline/control models) were constructed from the 

same word-level representations (GloVe, Pennington et al. 2014). Analyses tested for patterns in fMRI 

representations of sentences that InferSent could predict but the other models could not. The analysis 

was initially undertaken on voxels sampled across the whole cortex. To test for evidence that fMRI 

representations within multiple distributed brain regions reflected propositional meaning, the analysis was 

repeated within regions of a predefined language network (Fedorenko et al. 2010). 

 

Next, in a follow up analysis, we placed the results in the context of two other deep networks - ELMo and 

BERT - that have recently broken various Natural Language Processing (NLP) benchmarks and 

contributed to high performance solutions to the Stanford Natural Language Inference (SNLI) sentence 

entailment task (on which InferSent was trained). ELMo and BERTs’ high NLP performance gives good 

reason to hypothesize they would provide highly accurate fMRI predictions. On the flipside, whilst BERT 

is probably the strongest and most complex NLP approach, architecturally it might be the least cognitively 

plausible for the current serial reading task because BERT processes every word in a sentence in parallel 

(see also Merkx and Frank 2020 for a focused investigation of related matters). So, the added complexity 

may provide no benefit here. To find out, we repeated the cortex-level analysis using ELMo and BERT. 

 



In a final analysis, we estimated the room for improvement in modeling the current fMRI data set. We first 

tested for semantic signal that was unpredicted by the deep network models using an “experiential 

attribute” model (Binder et al. 2016). The experiential model was acquired via behavioral ratings of 

sensory, motor, cognitive, interoceptive and affective attributes of worldly experience, and potentially 

reflects semantic information that cannot be estimated from text corpora. Finally, to estimate how much 

sentence processing fMRI signal (semantic or otherwise) that was left unpredicted by all of the models 

we applied a cross-participant fMRI encoding analysis (similar to Anderson et al. 2019b). 

 

As additional background, despite their high NLP performance, we had considered ELMo and BERT to 

be less suitable vehicles for our primary analysis because: (1) ELMo and BERT do not strictly define how 

sentence representations should be constructed from words (unlike InferSent which produces a single 

sentence representation). (2) ELMo and BERT would provide more obscure baseline models (e.g. 

context independent bag-of-words) because they operate on character-level/sub-word units (see 

Methods), so a bag-of-words would be a bag-of-word-parts. (3) ELMo and BERT are architecturally more 

complex than InferSent, which makes analyses and interpretation more complex. 

 
Materials 
All sentences were pre-selected as experimental materials for the Knowledge Representation in Neural 

Systems (KRNS) project (Glasgow et al. 2016, www.iarpa.gov/index.php/research-programs/krns), 

sponsored by the Intelligence Advanced Research Projects Activity (IARPA). The stimuli consisted of 

240 written sentences containing 3-9 words and 2-5 (mean±sd = 3.33±.76) content words, formed from 

different combinations of 141 nouns, 62 verbs, and 39 adjectives (242 words). The sentences are listed 

in full in the Supplementary Materials of Anderson et al. (2017) and Anderson et al. (2019a). Sentences 

were in active voice and consisted of a noun phrase followed by a verb phrase in past tense, with no 

relative clauses. Most sentences (200/240) contained an action verb and involved interactions between 

humans, animals and objects, or described situations involving different entities, events, locations, and 

affective connotations. The remaining 40 sentences contained only a linking verb ("was"). Each word 

occurs a mean±sd [range] of 3.3±1.7 [1 7] times throughout the entire set of sentences and co-occurs 

with 8.1±4.3 [1 19] other unique words. The same two words rarely co-occur in more than one sentence, 

and 213/242 words never co-occur more than once with any other single word. Forty-two sentences 

contained instances of words not found in any of the other 239 sentences, and 3 of these sentences 

contained 2 unique words. There were thus 45 words that occurred in only one sentence, of which 29 

were nouns, 7 were verbs and 9 were adjectives.  

 
Participants 



Participants were 14 healthy, native speakers of English (5 males, 9 females; mean age = 32.5, range 

21-55) with no history of neurological or psychiatric disorders. All were right-handed according to the 

Edinburgh Handedness Inventory (Oldfield 1971). Participants received monetary compensation and 

gave informed consent in conformity with the protocol approved by the Medical College of Wisconsin 

Institutional Review Board. 

 
Procedure 
Participants took part in either 4 or 8 scanning visits. The mean interval between sessions was 3.5 days 

(SD = 3.14). The range of the intervals between first and last visits was 15 - 43 days. In each visit, the 

entire list of sentences was presented 1.5 times, resulting in 12 presentations of each sentence over the 

8 visits in 10 participants, and 6 presentations over 4 visits in 4 participants. Each visit consisted of 12 

scanning runs, each run containing 30 trials (one sentence per trial) and lasting approximately 6 minutes. 

The presentation order of each set of 240 sentences was randomly shuffled. 

 

The stimuli were back-projected on a screen in white Courier font on a black background. Participants 

viewed the screen while in the scanner through a mirror attached to the head coil. Sentences were 

presented word-by-word using a rapid serial visual presentation paradigm (Forster, 1970). Nouns, verbs, 

adjectives, and prepositions were presented for 400 ms each, followed by a 200-ms inter-stimulus interval 

(ISI). Articles ("the") were presented for 150 ms followed by a 50-ms ISI. Mean sentence duration was 

2.8 s (range [1.4s 4.2s]). Words subtended an average horizontal visual angle of approximately 2.5°. A 

jittered inter-trial interval, ranging from 400 ms to 6000 ms (mean = 3200 ms), was used to facilitate 

deconvolution of the BOLD signal. Participants were instructed to read the sentences and think about 

their overall meaning. They were told that some sentences would be followed by a probe word, and that 

in those trials they should respond whether the probe word was semantically related to the overall 

meaning of the sentence by pressing one of two response keys (10% of trials contained a probe). 

Participants’ mean accuracy was 86% correct, with a minimum accuracy of 81%. Participants were given 

practice with the task outside the scanner with a different set of sentences. Response hand was 

counterbalanced across scanning visits. 

 
MRI parameters and preprocessing 
MRI data were acquired with a whole-body 3T GE 750 scanner at the Center for Imaging Research of 

the Medical College of Wisconsin using a GE 32-channel head coil. Functional T2*-weighted echoplanar 

images (EPI) were collected with TR = 2000 ms, TE = 24 ms, flip angle = 77º, 41 axial slices, FOV = 192 

mm, in-plane matrix = 64 x 64, slice thickness = 3 mm, resulting in 3 x 3 x 3 mm voxels. T1-weighted 

anatomical images were obtained using a 3D spoiled gradient-echo sequence with voxel dimensions of 

1 x 1 x 1 mm. fMRI data were pre-processed using AFNI (Cox, 1996). EPI volumes were corrected for 



slice acquisition time and head motion. Functional volumes were aligned to the T1-weighted anatomical 

volume, transformed into a standardized space (Talairach and Tournoux 1988), and smoothed with a 

6mm FWHM Gaussian kernel. The data were analyzed using a general linear model with a duration-

modulated HRF, and the model included one regressor for each sentence. fMRI activity was modeled as 

a gamma function convolved with a square wave with the same duration as the presentation of the 

sentence, as implemented in AFNI’s 3dDeconvolve with the option dmBLOCK. Duration was coded 

separately for each individual sentence. Finally, a single sentence-level fMRI representation was created 

for each unique sentence by taking the voxelwise mean of all replicates of the sentence. 

 

Cortical language network 
To test for evidence that multiple cortical regions encode propositional semantics, we analyzed a 

“language network” that was predefined by Fedorenko et al. (2010) and can be freely downloaded from: 

https://evlab.mit.edu/funcloc/. The language network specifies cortical regions that were more 

functionally activated when stimulated with real sentences than by sequences of pseudowords. The 

language network spans bilateral temporal, inferior parietal and inferior and mid frontal regions. These 

regions were initially identified on the left hemisphere and flipped onto the right. We selected the “original” 

language network parcellation that contains 16 regions of interest (ROIs) over other alternatives on the 

website (e.g. an updated network with 12 ROIs) because the original network covers more cortex and 

contains more anterior-posterior subdivisions of the temporal cortex (which was convenient for our 

current goal of testing multiple cortical ROIs). The cortical location of ROIs is later illustrated in Figures 
7 and 8 and the breakdown of anatomical regions contributing voxels analyses within each ROI is listed 

later in Table 1.  

Experimental Design and Statistical Analysis 
Overview of the sentence models 
To predict fMRI representations of sentence meaning we deployed a selection of semantic models of 

sentence meaning. Our primary analysis used InferSent which computes a complex recurrent non-linear 

composition of words into unified sentence representations. We implemented three baseline models, 

Bow(GloVe), Seq(GloVe) and Gramm(GloVe), which we used to account for 

linear/sequential/grammatical rule-based composition of words into sentences. Importantly, all four 

models, including InferSent, were derived from the same context-independent word-level semantic 

model, GloVe (Pennington et al. 2014). To serve as a control for syntax, we constructed a model of the 

grammatical structure of sentences (Grammar). To further control for fMRI activation associated with 

visual processing of the written sentence stimuli we constructed two additional models that respectively 

coded the descriptive statistics of word/sentence lengths (Char stats), and the rudimentary visual 

appearance of sentences (Word overlay). These models echo approaches taken by previous studies to 



control for the visual appearance of words (e.g., Just et al. 2010, Devereux et al. 2013, Wehbe et al. 

2014, Fernandino et al. 2016). 

 

In our follow up analyses, we placed the predictions made by InferSent (and the other models) in the 

context of two other deep network models - ELMo and BERT – and a behavioral rating-based experiential 

attribute model. The models are described in the following text in the order of the analyses they first 

appear in. We provide a more cursory description of ELMo, BERT and the attribute model, because they 

are a secondary focus of the current study. 

 
GloVe semantic vectors – word-level units in primary analysis 
There has been a long tradition in computational linguistics of leveraging the distributional statistics of 

word cooccurrences in natural text as a basis for estimating semantic representation. So-called 

distributional semantic models (a.k.a. word embeddings) approximate word meaning using vectors of 

values reflecting how often a target word co-occurred with other words across a huge body of text 

(Landauer and Dumais 1997, Burgess and Lund 1997, Mikolov et al. 2013, Pennington et al. 2014). The 

current article is principally based on one such model, GloVe (Pennington et al. 2014). GloVe represents 

individual words as 300-dimensional floating point vectors derived by factorizing a word co-occurrence 

matrix (vocabulary size is 2.2 million words and co-occurrences were measured across 840 billion tokens 

from Common Crawl https://commoncrawl.org). GloVe initially came to prominence in the fMRI literature 

for yielding state-of-the-art performance decoding fMRI activation associated with sentences in Pereira 

et al.’s (2018) “universal neural decoder of linguistic meaning”. Additionally, GloVe was the basis for the 

initial implementation of InferSent (Conneau et al. 2017). For these reasons we used GloVe as the basis 

word-level unit in our analyses. 

 

InferSent(GloVe) – Primary analysis  
<Figure 2> 

InferSent is a supervised recurrent non-linear deep learning approach that was presented as an 

alternative to previous unsupervised corpus-based methods for modeling sentence-level semantics 

(Conneau et al., 2017). In supervised learning InferSent leverages human expert knowledge to optimize 

neural network weights to recurrently combine and refine word-level representations to model sentences. 

The expert knowledge was provided by the Stanford Natural Language Inference (SNLI) dataset 

(Bowman et al., 2015) which contains 570K English sentence pairs, with each pair manually categorized 

according to (1) whether one sentence entailed the other, (2) whether sentence pairs were contradictory, 

or (3) neutral. Thus, the final sentence representations produced are optimized to support accurate 



computations of inter-sentence entailment relations. Successful evaluations on separate natural 

language inference data sets are presented in Conneau et al. (2017). 

 

We refer to the unified sentence representations produced by InferSent as propositional because 

classifying entailment relies upon an informal comparison of the propositional content of sentences. e.g. 

whether the relationship between entities referenced by a sentence appears to be true or false, and 

whether a second sentence appears to specify a coherent or contradictory (propositional) inter-entity 

relationship. We say “informal”, and “appears to be” because strict logical relationships rarely hold in 

natural language. For instance, although most people would consider that “Socrates got caught out by 

the rain” probably entails that “Socrates got wet” this is not 100% assured – perhaps Socrates was stuck 

sheltering from the rain. Likewise, our use of the word “proposition” should be considered to be more 

graded and probabilistic in nature than the TRUE/FALSE logical propositions typical of propositional 

calculus. 

 

InferSent is constructed from two modules (Figure 1 and 2): (1) A sentence encoder, which is a recurrent 

artificial neural network that iteratively combines an input sequence of word vectors (currently GloVe) 

presented one at a time, into a sentence-level vector output. (2) An entailment classifier, that takes two 

sentence-level vectors as input (two outputs from the sentence encoder), and estimates whether the pair 

are entailed, contradictory or neutral. The entailment classifier plays a critical role in the training 

procedure. Specifically, the difference between the classifier estimate and the correct classification (from 

SNLI) provides an error signal that can be propagated back through the sentence encoder to optimize 

network weights. After the sentence encoder weights have been optimized via the entailment classifier, 

the encoder module can be used in isolation to generate new representations of novel sentences (as was 

the case for encoding the 240 sentences tested in this article). The architecture of the two modules is 

outlined in more detail as follows. 

 

Sentence encoder: The basic unit of the sentence encoder is the Long Short-Term Memory (LSTM) 

(Hochreiter and Schmidhuber, 1997) recurrent neural network. Recurrent networks are broadly 

characterized by having feedback loops that enable previous network outputs to inform processing of 

and to be integrated with new inputs. This enables new words to be interpreted in fed back context, which 

is critical for correct interpretation of polysemous words and homonyms. For instance, “bat” has multiple 

meanings (e.g. flying mammal or sports tool) that can be selected by context (e.g. fruit bat vs. baseball 

bat). LSTMs were introduced to overcome difficulties faced by standard recurrent approaches in retaining 

critical information over long time intervals. For instance, to correctly interpret “…the bat flew through the 

air”, given the preceding context “The batsman lost his grip and…”, it is necessary to relate bat to batsman 

at the start of the sentence. LSTMs accommodate long-term dependencies through a network 



architecture that uses a memory cell to remember information across consecutive network cycles, and a 

series of three non-linear information gates that manage how information flows through the network. 

Gates are (1) a forget gate, which deletes irrelevant information from the cell, (2) an input gate, which 

selects what new information should be added to the cell, and (3) an output gate, which retrieves 

information from the cell to form network output. All three gates select information to delete/store/retrieve 

based on the new input (e.g. a word) and previous output (e.g. the sentence-so-far). Thus, on each 

iteration, a new word is input, the cell memory is updated, and a filtered version of the cell memory is 

output from the network, and fed back for the next iteration.  

The sentence encoder employs a bidirectional LSTM (Graves and Schmidhuber, 2005). As the name 

implies, bidirectional LSTMs combine two LSTMs, which respectively cycle forwards and in reverse order 

through input (here words). Thus, for any word in a sentence, the bidirectional LSTM simultaneously 

supplies information on historic and future context which was collated by concatenating outputs from the 

two LSTMs. Intuition of how modeling future context could be advantageous for language comprehension 

is easy to supply – it is not until the end of the sentence “The bat flew through the air, and bit her on the 

neck” that it is clear that the bat is a vampire. Indeed, encoding of past and future context often affords 

practical advantages over unidirectional LSTMs (e.g. Graves and Schmidhuber, 2005), as also was the 

case for InferSent in tests on a battery of standard Natural Language Processing tasks (Conneau et al. 

2017).  

 

However, because bidirectional operation produces an output vector for each word (reflecting 

forwards/reverse information across the entire sentence), one must be chosen to reflect a sentence, or 

they must be combined. To form a single sentence representation, InferSent selects the maximum 

pointwise activation value across all output vectors. In tests on NLP tasks, this “max-pooling” 

representation was found to have practical advantages over the obvious alternative of mean-pooling 

(Conneau et al. 2017). The max-pooled sentence vector was the representation used in all analyses in 

this article. Sentence vector length was 4096. 

 

Entailment classifier: To classify whether sentence pairs are entailed, contradictory or neutral, a fully 

connected feedforward neural network, with a single hidden layer and a 3 class Softmax output layer is 

employed. The Softmax function normalizes the three network outputs to sum to one, to estimate the 

probability of each entailment class being correct. Classifier input was supplied by the sentence encoder 

which was run twice per classification to generate two sentence representations for testing. The classifier 

input representation combined information within and across the two sentences, as was computed in 

three ways: (1) concatenating the sentence vectors, (2) taking the absolute difference between sentence 



vectors, (3) taking the pointwise multiplication of the two vectors. These 3 representations were 

concatenated for entry into the classifier. 

 

InferSent Training: As mentioned above, training was performed with sentences from the Stanford 

Natural Language Inference (SNLI) dataset (Bowman et al., 2015). Optimization of weights was achieved 

by stochastic gradient descent, run on minibatches of 64 sentence pairs. The error signal computed 

across the 64 sentence classifications was used as a basis for adapting weights across both the classifier 

and the sentence encoder. Learning rate and weight decay parameters were set at 0.1 and 0.99 

respectively. Learning weight was divided by 5 if classification accuracy decreased. Training was 

terminated when the learning rate fell below a threshold of 10−5. Source code is freely available (see 

Code availability). 

 

Following training, the encoder module was used in isolation to generate vector representations of the 

240 sentences included in the fMRI study. For all of the analyses in this article, we used the pretrained 

version of InferSent constructed by the original authors (Conneau et al. 2017). 

 
BoW(GloVe) – Primary analysis baseline  
Bag-of-words models represent sentences as an unordered linear assembly of constituent words (e.g. 

by computing the pointwise  average of word vectors), and have endured as a practically successful 

technique in both computational linguistics (Mitchell and Lapata 2010, Kiela et al. 2014), and fMRI 

analyses (Anderson et al. 2017; Yang et al. 2016; Wang et al. 2017; Pereira et al. 2018; Anderson et al. 

2019a, Anderson et al. 2019b) despite their obvious shortcomings in neglecting word order, syntax and 

morphology. We implemented the bag-of-words model by taking the pointwise mean of GloVe vectors 

for constituent words in sentences (Figure 1). In previous work (e.g. Anderson et al. 2019b) we had 

excluded function words (e.g. “The”, “in”) from our analyses, however we included them here to serve as 

a control for InferSent which does operate using function words. Relatedly, in pilot tests we observed that 

including function words led to slightly greater prediction scores. Also, because InferSent employs a max-

pooling stage (described in the previous section) we experimented with computing the maximum 

featurewise value across word vectors within sentences, rather than averaging them. This brought no 

performance benefit, and these results are not discussed further. 

 
Gramm(GloVe) – Primary analysis baseline 
To capture the grammatical structure of sentences in a semantic model we created a canonical sentence 

representation that contained slots for semantic vectors of words with different grammatical roles. Nine 

different grammatical structures were identified in the 240 experimental sentences (Anderson et al. 

2019a). These nine structures were constructed from combinations of the following elements, Subject 



(240), Verb (196), direct Object (128), Indirect Object (27), Copula-phrase (44) and Adjunct (74). The 

number in parentheses indicates the number of sentences containing the grammatical element. The nine 

different grammatical structures were as follows, with the number of sentences following that structure 

listed in parentheses: 

 

Subject, Verb (3): [S: The patient][V: survived] 

Subject, Verb, Object (98): [S: The family][V: survived][O: the powerful hurricane] 

Subject, Verb, Object, Indirect Object (7): [S: The child][V: gave][O: the flower][IO: to the artist] 

Subject, Verb, Object, Adjunct (23): [S: The child][V: broke][O: the glass][Adju: at the restaurant] 

Subject, Verb, Indirect Object (19): [S: The parent][V: shouted][IO: at the child] 

Subject, Verb, Indirect Object, Adjunct (1) [S: The judge] [V: stayed] [IO: at the hotel][Adju: during the 

vacation] 

Subject, Verb, Adjunct (45): [S: The wealthy family][V: celebrated][Adju: at the party] 

Subject, Copula-phrase (39): [S: The family] [Cop: was happy] 

Subject, Copula-phrase, Adjunct (5): [S: The school] [Cop: was empty][Adju: during summer] 

 
The canonical sentence model (illustrated in Figure 1) was a long vector containing 6 slots for GloVe 

vectors corresponding to each of the grammatical elements (hence 1800 dimensions in total, given each 

GloVe vector is 300 dimensions). The vector was first initialized with zeros. Then, GloVe vectors for 

content words were slotted into the vector, according to their grammatical role. In cases where a 

grammatical element is modified by an adjective (e.g. “The wealthy family” in the above example), then 

semantic vectors for the adjective was pointwise averaged with the noun. If sentences did not contain a 

particular grammatical entry their value remained as zero. Function words (illustrated in italics) in the 

above example were not included in the model. This was because we had attempted to implement the 

role of function words by segregating content words within the grammatical frame. 

 
Seq(GloVe) – Primary analysis baseline 
To model the order that constituent content words in sentences appeared in, we simply concatenated 

GloVe vectors for words end on end in order of presentation (Figure 1). Specifically, each sentence was 

modeled as a long vector containing 9 slots, to accommodate 9 or fewer words (the longest sentence 

contained 9 function and content words). Thus, the vector had 2700 dimensions. If the sentence 

contained only 3 words, GloVe vectors would be slotted in to the first, second and third slots (the first 900 

dimensions) and the remainder of the vector would be padded with zeros. 

 

Grammar – Primary analysis baseline 



To capture only the grammatical structure of sentences, we created a binary model encoding the 

presence or absence of grammatical elements in sentences. In line with the grammatically structured 

semantic model described previously (Gramm(GloVe)), the current model was a vector containing 6 

entries for Subject, Verb, direct Object, Indirect Object, Copula-phrase and Adjunct. If a sentence 

contained a grammatical element, the corresponding vector entry was assigned the value 1. Otherwise 

it was assigned a 0. 

 
 
Visual appearance of textual sentence stimuli – Primary analysis controls 
To model fMRI activation associated with the visual processing of the written sentence stimuli we 

constructed two models. Char stats coded descriptive statistics of the number of characters and words 

in sentences. Each sentence was represented as a six element vector coding the number of words in the 

sentence, the mean, standard deviation, maximum and minimum number of characters per word, and 

the number of characters in the entire sentence. Word overlay coded a coarse representation of the 

visual appearance of the sentence stimuli, which had been presented word by word. Each sentence was 

represented as a vector of eleven elements. Eleven reflected the number of characters comprising the 

longest words within the set of experimental sentences. To construct the sentence representation, each 

word was first also modeled as a binary vector of eleven elements. The presence/absence of a character 

in respective positions of the word was modeled as a 1/0 respectively. Then all word vectors in the 

sentence were pointwise summed. As a dummy example, illustrated with a six element vector, “A cat 

jumped” would be represented as: [3 2 2 1 1 1] =  [1 0 0 0 0 0 ] + [1 1 1 0 0 0] + [ 1 1 1 1 1 1 ]. 

 
Embeddings from Language Models (ELMo) – Follow up analyses 
ELMo is a recurrent deep network approach that was introduced to generate contextualized vector 

representations of words that capture elements of both syntax and semantics and accommodate 

polysemy (Peters et al. 2018). Architecturally ELMo incorporates three layers of subnetworks that 

process word sequences. Each layer outputs word vectors with different degrees of contextualization. 

The three vectors are typically integrated via a weighted average that may be fine-tuned according to the 

specific task. 

 

ELMo’s first layer (L1) is a convolutional neural network that generates context-independent word vectors 

from the series of characters forming each word. Operating on characters enables ELMo to leverage 

morphological similarities between words to generate semantic representations for new untrained words. 

For example, ‘computer’, ‘computed’ and ‘computerized’ are all semantically related and all share the 

same character stem (“compute”), which would suggest that a new word “computerization” would have a 

related meaning. The convolutional network approach to transforming character sequences into word 

vectors is described in detail in Kim et al. (2016) 



 

The next two layers of ELMo are bidirectional LSTMs (L2 and L3) that memorize features of past/future 

words to produce increasingly contextualized word representations (see section on InferSent for a more 

detailed description of LSTMs). To encode bidirectional context, the output vectors extracted from 

forwards and backwards LSTMs are concatenated. The output of the second bidirectional LSTM (L3) 

feeds into a final Softmax layer that predicts the identity of a forthcoming or preceding word based on 

past or future words respectively, depending upon the direction of operation. Thus, unlike InferSent, 

ELMo’s training is entirely based upon the statistics of word use in text corpora (rather than human 

judgements of entailment relations). Weights across all layers of ELMo are optimized to improve the word 

prediction accuracy. 

 

We downloaded a pretrained implementation of ELMo constructed by the original authors (Peters et al. 

2018). In this implementation all word and sentence vectors have 1024 entries. Because ELMo does not 

strictly commit to a specific way to transform word-level vectors into a sentence representation we 

pointwise averaged vectors for constituent words in sentences to produce sentence vectors. We repeated 

this for each layer to produce one context independent and two contextualized vectors for each sentence 

(ELMo L1, ELMo L2 and ELMo L3 respectively). To combine all layers together, we concatenated them 

(ELMo L1,L2,L3). 

  

Bidirectional Encoder Representations from Transformers (BERT) – Follow up analyses 
Transformer encoders such as BERT (Devlin et al. 2018) were introduced in part to address the practical 

limitations of recurrent networks (including LSTMs) in capturing long-term dependencies between distant 

words, and in part to alleviate their lengthy serial processing times. BERT saves on time by parallelized 

processing of all word/subword vectors within a sentence/paragraph (note that for ease of explanation 

we shall refer to both words and subwords as words). BERT captures long-term dependencies via a “self-

attention” computation that places each word into the context of all other word inputs. In particular, having 

simultaneous access to both past and future words enables BERT to form richer representations of 

bidirectional context than bidirectional LSTMs (which process past and future separately and concatenate 

the respective outputs). However, such parallelization necessitates additional measures to retain word 

order (which recurrent networks encode implicitly). To resolve this BERT explicitly integrates a code 

reflecting both the absolute and relative sentential position of each word into that word’s input vector. 

 

Architecturally BERT is formed from multiple layers of identical so-called transformer blocks, with each 

block formed from multiple layers of nodes. Each subsequent block produces an increasingly 

contextualized representation of each word. Contextualization is achieved via self-attention which 

quantifies how relevant each of the other input words is to the current word (the self). In practice multiple-



self attention estimates are computed (Multi-Headed Attention) which potentially capture different types 

of contextual relationships. The outputs across all attention heads within a block are integrated, and 

passed on through a fully connected feedforward network to form the input to the next block. The last 

block feeds into two separate softmax layers that either serve to predict the identity of a masked input 

word or classify whether pairs of input sentences were consecutive. All weights throughout BERT were 

optimized according to these two tasks. The optimized architecture constitutes a “pretrained” BERT 

model that can later be fine-tuned for a particular task of interest (e.g. question answering) through 

additional training. 

 

In the current article we apply the pretrained “BERT-large-uncased” model, downloaded from Hugging 

Face (Wolf et al. 2020). This implementation has 24 layers of blocks, and 16 attention heads per block. 

The layer outputs provide 24 candidate representations of words. Each word vector has 1024 entries. 

We experimented with two ways to form sentences. The first was to use word combinations assembled 

by BERT in response to a key token “[CLS]”. [CLS] is included in input sequences to assist in the 

classification of consecutive sentences. The second was to take the pointwise average across word 

representations within each layer. Both approaches generated 24 sentence representations, one per 

layer. In pilot analyses we observed the [CLS] sentences to yield slightly weaker fMRI predictions across 

layers, and we therefore focused on the averaging approach. 

 

Seq(Experiential Attribute) – Follow up analyses 
The experiential attribute model (Binder et al. 2016) presented an alternative to modeling complex 

meaning using only word usage statistics, and seeks to account for knowledge acquired from sensory, 

motor, cognitive, interoceptive and affective experience interacting with the world – not just language and 

text. Bag-of-words based experiential attribute models have been extensively tested on the current fMRI 

dataset (Anderson et al. 2017; Anderson et al. 2019a) and complement Bag-of-words GloVe models in 

explaining representational structure (Anderson et al. 2019b).  

 

The experiential attribute model broadly aligns with “embodiment” theories that posit representations of 

word meaning reflect a summarization of the brain states involved in experiencing that word, partially 

reenacted across sensory/motor/affective/cognitive subsystems (e.g. Barsalou et al. 2008, Glenberg 

2010, Pulvermüller 2013, Binder et al. 2016). This model represents words in terms of human ratings of 

how strongly people associate words with different attributes of experience (e.g., “On a scale of 0 to 6, to 

what degree do you think of a banana as having a characteristic or defining color?”). Ratings were 

collected via Amazon Mechanical Turk for a total of 65 attributes spanning sensory, motor, affective, 

spatial, temporal, causal, social and abstract cognitive experiences. Ratings for each attribute were 

averaged across workers to derive a single 65 dimensional vector for each word.  



 

To model sentences, attribute vectors for constituent content words in sentences were concatenated in 

order of their presentation. This was in precisely the same fashion as Seq(GloVe), but excluding function 

words (which had not been behaviorally-rated). The Seq(Attribute) model was implemented in light of the 

results of our primary analysis displayed later in Figure 6 when Seq(GloVe) yielded higher prediction 

scores than the BoW(Glove) or Gramm(GloVe). Gramm(Attribute) and BoW(Attribute) had weaker 

explanatory power than the sequential model and are not discussed further. 

 
Predictive mapping using ridge regression and leave-one-sentence-out nested cross-validation 

 

<Figure 3> 

Because interpreting analyses of fMRI activation elicited by “uncontrolled” sentence/natural language 

stimuli can be complicated by spurious correlations between representations arising at different 

processing levels (from vision to semantics) we first estimated the extent to which this affected the current 

data by computing Representational Similarity Analyses (RSA, Kriegeskorte, et al. 2008) between all 

model pairs. These analyses demonstrated that despite similarities within broad model classes (semantic 

models correlated more strongly with one another than they did with models of visual processing), every 

model pair was significantly related (Figure 3, all p=0.001). In particular BERT correlated relatively 

strongly with the visual appearance models, which might reflect BERT’s explicit encoding of word 

positions (which reflects sentence length). 

 

We therefore configured both our model fitting approach and evaluation procedure to reduce the impact 

of such confounds between models. As we were primarily interested in evaluating how accurately the 

semantic models would generalize to predict neural representations of entirely new sentences, we 

undertook our analyses within a cross-validation framework where sentences used to test predictions 

minimally overlapped in their constituent words with the sentences used to train the predictive mapping 

between model and fMRI data. 

 

To map between each model and the fMRI data we applied ridge regression (Hoerl and Kennard, 1970) 

in a leave-one-sentence-out cross validation framework. This was repeated for each model and 

participant. Cross-validation iterated across the 240 sentences as follows. At each cross-validation 

iteration the data was split into a: (1) A test subset, formed from a single sentence (changing each 

iteration), which was used to evaluate the predictive power of the model. (2) A training subset, which was 

used to fit the predictive mapping between each model and the fMRI data. The training subset was formed 

from all sentences that did not contain any word in the test sentence other than “the”. As a result of this 



stipulation the number of sentences in the training set varied with each iteration (mean±SD 214±17 

sentences). (3) A tuning subset. The tuning subset was used to estimate the “ideal” ridge regression 

regularization parameter λ at each cross-validation iteration (as is described later this section). The 

mapping associated with the best λ was used to predict the test sentence from (1). The tuning sentences 

were the subset that remained after the training and testing sentences had been selected (mean±SD 

25±17 sentences) and they could overlap in constituent words with both the training and test sentence. 

It would have been preferable if there were no such overlap, but this would have resulted in small training 

data splits for the current dataset.  

 

At each cross-validation iteration, ridge regression was applied to the training sentences to fit a many-to-

one predictive mapping from the multidimensional model to each single voxel. Prior to fitting the 

regression, both voxel activation and model feature values were normalized by subtracting the mean 

across the training sentences, and dividing by the standard deviation (i.e. z-scoring). Model and fMRI 

data for the tuning and test sentences was likewise normalized according to same means and standard 

deviations that had been computed on the training sentences. A separate ridge regression was fit for 

each voxel and each of a series of regularization parameters (λ) used to counteract overfitting. 

 

To estimate the ideal λ at each cross-validation iteration, voxel activation for each of the tuning sentences 

was predicted using the regression mapping derived from each λ. The mean prediction accuracy across 

the tuning sentences was evaluated according to the rank scoring procedure detailed in the following 

section (Figure 4 left). The regression mapping associated with the highest scoring λ was selected to 

predict the test sentence. The prediction accuracy for the test sentence was evaluated via the same rank 

scoring procedure. 

 

For the cortex-level analysis we set candidate λs to range across: [ 1 1e1 1e2 1e3 1e4 1e5 ]. Because 

the “peak” selected λs were on average (across iterations and participants) within the range 1e1 to 1e4 

for each model, we believe a satisfactory fit was found in each case. For the ROI analysis, we extended 

the range of candidate λs to: [ 1 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8 ] following pilot tests. The average 

“peak”  λ value (across iterations and participants) selected for the different models across all ROIs was 

always within the range 1e1 and 1e6. This again suggested that a satisfactory fit was achieved for each 

model. 

 

Rank Scoring Prediction Accuracy 
<Figure 4> 



To evaluate the predictions made by each model we first computed Pearson correlation between each 

predicted fMRI sentence (a vector of activation values across voxels) and the original fMRI recording. 

Next, we evaluated how the correlation coefficient ranked comparative to coefficients computed between 

the predicted sentence and the original fMRI recordings of each of the other 239 mismatched sentences 

(see Figure 4 left and also Pereira et al. 2018). Under this set up, the ideal prediction would be marked 

by a high positive correlation coefficient yielding a rank of 240. The rank associated with the correctly 

matched sentence was subsequently normalized to the range 0 to 1, by subtracting 1 and dividing by 

239. A final normalized rank score was assigned to each model as the mean normalized rank across all 

240 sentence predictions (one per each cross-validation iteration). If there were no sentence-related 

signal in either the fMRI data or the model the expected score would be 0.5. 

 

To further estimate the exclusive contribution that each model made to predicting fMRI activation, we 

computed a “semi-partial rank score” as is illustrated in Figure 4 (right). This semi-partial score 

complemented the rank score which risked obscuring whether or not different models were predicting 

complementary information. For instance, two models may obtain the same rank score by predicting 

different components of the fMRI signal. 

 

The semi-partial rank score was estimated by computing the semi-partial correlation between the original 

fMRI recording of a sentence S, and the representation of S predicted by one model (e.g. A) whilst 

controlling for predictions of S made by the combination of other models (e.g. B, C, D and so on). 

Practically, the prediction of S made by A was regressed on the prediction made by B, C, and D (using 

multiple regression). Then the residual was computed, which reflected the pattern exclusively predicted 

by A, but not the other models. To quantify the exclusive prediction accuracy Pearson’s correlation 

between the residual and the original fMRI sentence representation was computed. Then the residual 

was compared to the original fMRI recordings of each of the other 239 mismatched sentences using 

Pearson correlation. The correlation coefficients were then ranked, and the rank associated with 

sentence S was normalized to the range 0 to 1. A final normalized semi-partial rank score was assigned 

as the mean normalized rank across all 240 sentence predictions. If there were no signal exclusive to the 

test model (here A) then the expected semi-partial score would be 0.5.  

 

We note that there could have been other ways to approach evaluating the unique contribution of 

individual models to predicting variance (in particular see the variance partitioning approach of de Heer 

et al. 2017). For instance, sentence vectors associated with different models could have been stacked 

together to form one large composite predictor in each multiple regression. For the case at hand, the 

computational overheads associated with fitting the regression to a composite of multiple models with 



thousands of features and potentially repeating this to find λ combinations for the constituent models 

made this approach prohibitive. 

 
Voxel selection and averaging sentence replicates 
Because not all fMRI voxels contain informative signal, we estimated which ones were likely to be 

informative using a commonly used “stability” strategy (e.g. Mitchell et al. 2008, Chang et al. 2010, Pereira 

et al. 2013, Anderson et al. 2015, Anderson et al. 2017, Yang et al. 2017, Wang et al. 2017, Anderson et 

al. 2019b). At each cross-validation iteration, we took the subset of training sentences and estimated 

which voxels were informative by taking each of the 12 (or 6) fMRI runs through training sentences and 

voxelwise correlating each unique pair of runs together.  For the ten participants with 12 runs, this left 66 

pairwise correlation coefficients per voxel, and for the four participants with 6 runs this left 15 pairwise 

correlation coefficients per voxel. A single stability score was assigned to each voxel by taking the mean 

of these (66 or 15) correlation coefficients. We selected and then segmented the n-voxels with the highest 

correlation coefficients to enter the voxel-wise encoding modeling analysis, whilst discarding the other 

voxels.  

 

The value for n differed for our initial analysis that sampled voxels across the entire cortex (where n was 

500 to echo the number chosen in Mitchell et al.’s (2008) seminal analysis), and for our ROI analysis 

(where n was 50 within each ROI, maintaining consistency with a previous study – Anderson et al. 2019b). 

For the cortex-level analysis we excluded the occipital pole and calcarine sulcus ROIs 

(‘ctx_lh_Pole_occipital’, ‘ctx_rh_Pole_occipital’, 'ctx_lh_S_calcarine’, 'ctx_rh_S_calcarine’) from voxel 

selection to cut down on signal associated with early visual processing of the sentence stimuli (which we 

were not interested in testing). 

 

Both numbers of voxels selected (500 and 50) are ultimately arbitrary, however we are confident this 

particular parameterization has little bearing on the pattern of critical results we present here. For 

instance, in the current article we often obtain similar patterns of results across models whether looking 

at 50 voxels within an individual ROIs, or 500 voxels across the brain. Likewise, in previous work we have 

observed model-based results to be robust when different numbers of voxels are explicitly tested 

(Anderson et al. 2019b). 

 

Following voxel selection, and prior to regression, fMRI activation patterns for the 12 (or 6) replicates of 

the same sentence were voxelwise averaged. This produced a single fMRI representation for each of the 

240 sentences for each of the 14 participants. 

 



Cross-participant similarity-based encoding 

<Figure 5> 

To provide an estimate of how much signal in each participant’s fMRI data had not been predicted by the 

models we computed a cross-participant analysis. This analysis used fMRI data from other participants 

as a basis for predicting sentence representations in the test participant. This followed the reasoning that 

in the general case commonalities in representation estimated across a group will provide the strongest 

estimate of a separate individual – assuming a sufficiently sized group, and the lack of personalized 

models (see also Anderson et al. 2020). 

To perform cross-participant encoding we applied a representational similarity-based approach to 

sidestep problems associated with structural and functional misalignments across participants’ fMRI data 

(that persist despite anatomical normalization). This is a simpler and more approximate alternative to 

hyper-alignment (Haxby et al. 2011) or stacking fMRI data across multiple participants to use as 

predictors in a large multiple regression (which rapidly becomes computationally prohibitive). 

Nonetheless, we have found it to be practically effective in related work (Anderson et al. 2016, Anderson 

et al. 2019b) as we do again here. 

Cross-participant similarity-based encoding (Figure 5) uses the array of similarities computed between 

a test-sentence, and a selection of training sentences from one participant’s fMRI data as the basis for 

predicting the representation of the test sentence in a different participant (from their corresponding 

training sentences). Similarities were beta-coefficients arising from the regression of the test sentence 

fMRI vector on each of the training sentences. Thus, if there are 230 training sentences there were 230 

beta-coefficients. The fMRI representation of the test sentence in a new participant was predicted via a 

weighted average of the second participant’s 230 training sentences, where the weights were the original 

participants’ beta-coefficients. Group-level commonalities were estimated by taking the mean of beta-

coefficients across multiple participants. For instance, the pointwise average of the 230 beta-coefficients 

across participants 2 to 14 was applied to encode the test sentence in participant 1. 

 
Tests of statistical significance 
The accuracy that each model could predict fMRI representations of sentences (whether at cortex or ROI 

level) was scored at an individual participant level, using the normalized rank score and normalized semi-

partial rank score metrics described in section “Rank Scoring Prediction Accuracy” and illustrated in 

Figure 4. Both rank scores ranged from 0 to 1, with 0.5 representing the theoretical chance level (i.e. the 

result to be expected if the analysis were repeated with models and fMRI data that contained no 

correlated signal). 

 



To provide an individual participant-level estimate of the statistical significance of the rank scores 

generated by each model, we ran permutation tests. Model sentence vectors were randomly shuffled so 

that they were no longer aligned with their sentence labels (e.g. such that the representation of “meaning” 

was misaligned with the text label). The fMRI data remained untouched. Normalized rank scores were 

computed with the shuffled sentences. This process was repeated 100 times with different random 

shuffles to supply a null distribution of scores. A p-value was computed as the fraction of times that scores 

generated with shuffled model sentences exceeded scores generated with the correctly ordered data. 

 

To test for the generality of results across participants, non-parametric signed ranks tests were applied.  

To test for differences in prediction accuracy between models, signed rank tests were applied to the 14 

participants’ normalized rank scores arising from each model. To test whether individual models could 

exclusively predict fMRI signal components that were not predicted by other models, normalized semi-

partial rank scores for the 14 participants were compared to the chance-level of 0.5 using one-sample 

signed rank tests. 

 

Multiple comparisons were corrected for as indicated in the Results using False Discovery Rate (FDR, 

Benjamini and Hochberg 1995).  

 
Data and code availability 
 
Preprocessed fMRI data and Matlab v2020a code to compute all analyses will be available at: 

https://osf.io/7uvmg/?view_only=b87e0fde87194457ad3f563609067bba 

Language network ROIs were downloaded from https://evlab.mit.edu/funcloc/, selecting the download 

option for “A subset of the original parcels from Fedorenko et al. (2010) which include the 8 parcels in 

the frontal and temporal lobe” and [“… flipped onto the RH”]. 

Pretrained GloVe was downloaded from: https://nlp.stanford.edu/projects/glove 

Pretrained InferSent was downloaded from: https://github.com/facebookresearch/InferSent 

Pretrained ELMo was downloaded from AllenNLP: https://allennlp.org/elmo. 

Pretrained BERT was downloaded from: https://huggingface.co/transformers/pretrained_models.html. 

We selected the ‘bert-large-uncased’ implementation, run under PyTorch 1.6.0.



Results 

<Figure 6> 
 

fMRI data reflects propositional sentence-level semantics encoded by InferSent 
To firstly establish how accurately fMRI activation could be predicted by InferSent, the three GloVe-

baseline models and the grammatical structure model, we computed normalized rank scores (Figure 4 
left) for each model and participant in a cortex-level analysis on 500 stable voxels (see Figure 6 right 
for an neuroanatomical illustration of the voxels). All models predicted fMRI sentence representations at 

accuracies that were significantly greater than chance-level (permutation-based p-values were 0.01 for 

each model and participant, with 100 permutations). Comparative results for the different models are 

illustrated in Figure 6. From qualitative visual inspection of Figure 6 (top left), it is clear that InferSent 

yielded the strongest rank scores, followed by Seq(GloVe), Gramm(GloVe), BoW(GloVe) and Grammar. 

This was supported by the results of two-tailed signed rank tests that compared scores between model 

pairs (results are shown on Figure 6, top left). 
 

To estimate whether InferSent could exclusively predict components of sentence activation in the fMRI 

data that had not been predicted by the combination of Seq(GloVe), Gramm(GloVe), BoW(GloVe), 

Grammar and the visual appearance models (Char stats and Word overlay) we computed normalized 

semi-partial rank scores (See Figure 4 right). This analysis was undertaken on the same 500 stable 

voxels as the previous rank score analysis (Figure 6 right). Results for the different models are illustrated 

in Figure 6 (bottom left) and revealed that InferSent could predict components of activation in sentence-

level fMRI data that could not be predicted by any of the other models (Mean±SD semi-partial rank scores 

were 0.065±0.035). Statistical significance was evaluated using one sample signed rank tests to evaluate 

whether normalized semi-partial rank scores were greater than the chance-level of 0.5. For InferSent this 

found to be significant (W=105, p=0.0003, 1-tail, FDR corrected across the six models). We also detected 

evidence that Seq(GloVe), Bow(GloVe) and Grammar, but not Gramm(GloVe) could exclusively predict 

components of fMRI activation, albeit with lower semi-partial rank scores (see Figure 6 bottom left).  
 

These two analyses provided evidence that propositional sentence-level semantic representations can 

be detected in fMRI data, but did not indicate whether sentence-level representations were anatomically 

localized to a particular subset of the 500 voxels analyzed, as opposed to being distributed across 

multiple cortical sites. 

 

<Table 1> 
<Figure 7> 
<Figure 8> 



<Table 2> 
 

Multiple cortical regions encode propositional sentence-level semantics 

To estimate whether different regions of a distributed cortical “language network” locally encoded 

propositional sentence-level semantics, we evaluated voxel-wise encoding models on regional fMRI 

activation. We repeated the analyses of the previous section and computed normalized rank scores and 

semi-partial normalized rank scores (see Figure 4) for each participant and model on each of the 16 

language network ROIs. Results are displayed in Figures 7 and 8 respectively and ROI-level results 

broadly echo the outcomes of the cortex-level analysis (Figure 6). Note that to simplify display, we did 

not illustrate rank scores for the visual appearance models in Figure 7, but we list them in Table 2. 

As illustrated in Figure 7, InferSent yielded significantly stronger rank scores than all four of the baseline 

models in 7/8 left hemispheric ROIs. These included anterior, mid and posterior regions of the temporal 

lobe, inferior parietal cortex and inferior frontal gyrus, but excluded the mid-frontal ROI (LROI 8). The 

same effect was observed in 2/8 right hemispheric ROIs (both right inferior frontal: RROI 4 and 6). We 

note here that the rank scores for right hemispheric ROIs tended to be visibly weaker than their left 

hemispheric counterparts, suggesting lower signal and potentially less power to discern differences 

between models. Statistical significance was evaluated with 2-tailed signed rank tests that compared 

InferSent to each of the four baseline models. These four tests were repeated for each ROI and the entire 

set of p-values were FDR corrected. All test statistics are listed in full in Extended Data Figure 7-1. 

As illustrated in Figure 8, InferSent exclusively predicted components of fMRI activation in multiple 

regions of the language network that were not predicted by: Seq(GloVe), Gramm(GloVe), BoW(GloVe), 

Grammar, Char stats and Word overlay when combined together. Specifically, in the left hemisphere, 

semi-partial rank scores yielded by InferSent were significantly greater than chance-level in 7/8 temporal, 

inferior parietal and inferior temporal ROIs (one sample signed rank tests against 0.5, one-tailed, FDR 

corrected). These were the same left hemispheric ROIs for which InferSent previously yielded 

significantly stronger rank scores than the four baseline models (Figure 7). In the right hemisphere the 

same effect was observed in 5/8 ROIs, which included inferior frontal cortex (RROI 4 and 6 echoing 

Figure 7) and additionally regions of anterior and posterior temporal cortex. Other noteworthy 

contributions to prediction came from the Grammar baseline model in mid frontal ROI (LROI 8). Also, 

Grammar, Bow(GloVe) and Seq(GloVe) contributed to predicting LROI 1 (posterior temporal lobe). As 

we considered these baseline model results to be peripheral to our main aims, they are not discussed 

further. P-values were FDR corrected across all models and ROIs. All test statistics are listed in full in 

Extended Data Figure 8-1.  



Collectively, these results provided evidence that propositional sentence-level representations are 

encoded within and across multiple sites spanning temporal, parietal and frontal cortex, and not localized 

to any particular brain region. 

<Figure 9> 
 

Different deep artificial neural network sentence model predicted fMRI data with similar accuracy 
To place the current results acquired using InferSent into a broader landscape of other deep network 

approaches, we explored how cortex-level predictions made by InferSent compared to ELMo and BERT. 

We were interested to see whether ELMo and BERT’s strong NLP performance and added complexity 

carried over to strong fMRI prediction accuracy. 

 

To recap, ELMo has three layers, L1 is the representation derived from a character-based convolutional 

network and L2 and L3 are contextualized bidirectional LSTM-based representations. We analyzed each 

layer separately, and all layers concatenated together (L1,L2,L3). BERT has 24 layers reflecting 

contextualized representations generated by self-attention-based encoder blocks. We analyzed each of 

BERT’s 24 layers separately because regression on all 24 layers concatenated together or on 

combinations of fewer layers would have been computationally prohibitive at this stage of investigation. 

 

Normalized rank scores for ELMo and BERT are presented alongside all other approaches tested in this 

article in Figure 9. InferSent, ELMo (L2 or L3 or L1,L2,L3) and BERT’s best performing layers all yielded 

broadly similar normalized rank scores. Mean±SD scores across participants were InferSent: 

0.747±0.056, ELMo L1: 0.713±0.060, ELMo L2: 0.751±0.058, ELMo L3: 0.748±0.056, ELMo L1,L2,L3: 

0.754±0.059. BERT’s strongest mean rank scores were derived from mid-level layers:  L10: 0.758±0.052, 

L11: 0.755±0.053, L12: 0.761±0.053, L13:  0.758±0.053, L14: 0.757±0.055. BERT’s earlier layers yielded 

scores of around 0.74, whilst scores for later layers tailed off to 0.70.  

 

Signed ranks tests detected no significant differences between InferSent and ELMo L1,L2,L3 (W=79, 

p=0.104, uncorrected). Signed ranks tests between InferSent and each layer of BERT revealed a 

significant difference at L12 only when results were not corrected for multiple comparisons 

(BERT>InferSent, W=88, p=0.025 uncorrected) and at L18-L24 (InferSent > BERT all W≥99 and all 

p<0.002 uncorrected). Signed ranks tests between ELMo and BERT revealed significant differences at 

L1 to L3 and L17 to L24 (ELMo>BERT, all W≥96 and all p ≤0.004, uncorrected).  

 

This section has revealed that for the current fMRI dataset there were relatively mild differences in 

prediction accuracy between InferSent, ELMo and BERT. BERT L12 yielded the highest prediction 



accuracy of all, but this was not significantly more accurate than ELMo or InferSent. We did not explicitly 

test whether InferSent, ELMo and BERT made independent contributions to predicting fMRI data, 

because these could be due to a mixture of uncontrolled differences in network architecture, training 

paradigms, training data, word/subword inputs and so on. However, as a byproduct of an analysis 

performed in the next section, we did uncover evidence that each deep network approach could predict 

different (uninterpretable) components of fMRI signal (Figure 9 top right bar plot). 
 

The experiential attribute model revealed semantic signal that was not predicted by deep network 
sentence models 
To estimate how much room there is for improvement in computationally modeling the current fMRI data, 

we ran two additional analyses. The first leveraged an experiential attribute model (Binder et al. 2016), 

which was designed to approximate semantic knowledge acquired from sensory, motor, cognitive, 

interoceptive and affective experience, and thus potentially capture information that is not available from 

the text corpora used in deep network training. 

 

Rank scores for Seq(Attribute), comparative to all other models are displayed in Figure 9 (left). The 

Mean±SD score for Seq(Attribute) was 0.722±0.045, which was similar in magnitude to Seq(GloVe) 

(0.717±0.0741) and significantly lower than the deep network approaches (see signed rank tests in 

Figure 9). To estimate whether Seq(Attribute) predicted fMRI signal components that were not captured 

by the deep networks, we estimated semi-partial rank scores for Seq(Attribute) when controlling for 

InferSent, ELMo L1,L2,L3, BERT L12, Grammar, Char stats and Word overlay. The results are illustrated 

in Figure 9 (top right bar plot). Mean±SD semi-partial rank scores for Seq(Attribute) were 

(0.054±0.026), which was significantly greater than the chance-level of 0.5 (W=105, p= 0.0001, 1-tailed, 

FDR corrected across all models). 

 

These results provided evidence that there was semantic signal in the fMRI data that had not been 

predicted by the deep network models. This may reflect knowledge that was acquired through non-

linguistic experience of the word, as opposed to from text and language (Anderson et al. 2019b). 

 
Cross-participant encoding revealed fMRI signal that was not predicted by any model 
To estimate whether any fMRI signal was left unpredicted by the models irrespective of its nature 

(semantic or otherwise) we applied cross-participant encoding. To recap, cross-participant encoding 

assumes that in the absence of a personalized model (e.g. Anderson et al. 2020) and when armed with 

a sufficiently composed participant group, the best predictor of fMRI activation for an unseen sentence 

in an individual will be derived from fMRI activation for that sentence in a group of other individuals. 

 



We first computed rank scores using cross-participant similarity-based encoding at the cortex-level, which 

yielded a Mean±SD normalized rank score of 0.793±0.030 which was significantly greater than all other 

models (see Figure 9 bottom left and Extended Data Figure 9-1 for signed rank test outcomes). To 

reveal signal that was exclusively predicted by the cross-participant approach, we computed semi-partial 

rank scores in an analysis that included InferSent, ELMo L1, ELMo L1,L2,L3, Seq(Attribute), Grammar, 

Char stats and Word overlay. The results are illustrated in Figure 9 (bottom right bar plot). Cross-

participant semi-partial rank scores were comparatively high (0.153± 0.030). Semi-partial rank scores for 

the other models were low (all below 0.033), but some were still above zero, which suggests that the 

current cross-participant approach was an underestimate of the true upper bound prediction accuracy. 

 

These results provided evidence that there was substantial fMRI signal that had not been predicted by 

the models and more broadly that there is room for improvement in building sentence models to predict 

the current fMRI data. In addition, this section has suggested that the current cross-participant predictions 

have some room for improvement which might come from including more participants or applying more 

sophisticated strategies to integrate data across individuals (e.g. Haxby et al. 2011). 

 

  



Discussion  

The current study has revealed evidence that propositional sentence-level meaning is encoded in fMRI 

activation within and across regions of a previously identified cortical language network (Fedorenko et al. 

2010). To model sentence-level meaning, we used InferSent – a recurrent nonlinear deep neural network 

trained to combine sequences of word-level semantic vectors into unified propositional sentence-level 

representations. Our results showed that InferSent exclusively predicted components of activation in fMRI 

data that was unaccounted for by baseline models that superposed and/or segregated word-level 

semantic vectors. We first discuss what aspects of sentence-level semantics that InferSent may have 

captured that the other models did not, and how this information is distributed across the cortex. 

 

We use the term “propositional” here to refer to sentence-level information that is required to compute 

entailment relationships. In this sense, the propositional meaning of a sentence combines the meanings 

of its component words according to their functional roles in the sentence structure. That is, syntactical 

information must be inferred and integrated with lexical-semantic information, at least to some extent. 

The precise nature of the propositional information encoded by InferSent is however challenging to pin 

down, and indeed explaining deep network representations is notoriously difficult (see also Conneau et 

al. 2018 for an examination of the information captured by InferSent and related approaches). In part, 

this is because InferSent had opportunities to exploit several interacting factors to build propositional 

sentence representations. We outline these, however stress that future work will be necessary to 

establish the importance of each. 

 

Word sense selection. Behavioral experiments provide evidence that sentence comprehension is 

characterized by the initial activation of context-independent word representations, such that multiple 

senses of words like ‘bat’ are jointly activated, followed later by sense selection when the appropriate 

meaning is specified by contextual information (e.g., Swinney 1979; Tanenhaus et al. 1979; Till et al. 

1988). All of the current baseline models had no capacity to select/deselect appropriate/inappropriate 

word senses. However, InferSent’s Long Short-Term Memory (LSTM) architecture does afford this 

opportunity. Specifically, at each network cycle, the input gate non-linearly filters the incoming word 

(GloVe) for features to incorporate into the forthcoming sentence representation, guided by the previous 

“sentence-so-far” output (that is recurrently fed-back). Likewise, “forgettable” features are non-linearly 

filtered away from the cell memory that stores an internal sentence representation. Thus, both gating 

operations could deselect semantic features associated with inappropriate word senses and perform 

sense selection. 

 

Emphasizing words dominating sentence meaning. Electrophysiological studies have established that 

neural responses to different words in sentences vary considerably, with the strength of response roughly 



proportional to how unexpected a word is in the context (Kutas and Federmeier, 2011). Thus, “The dentist 

brushed the boy’s tree“ would elicit a greater  electrophysiological response (the so-called “N400”) than 

if the ending had been “teeth”. It is reasonable to consider that fMRI activation associated with semantic 

features of unexpected words may likewise be exaggerated. It is also reasonable to consider that function 

words emphasize particular content words (“the bat” rather than “bat” or “a bat”). The current baseline 

models had no capacity to distinguish and weight unexpected words, nor leverage function words to 

adapt content word meaning. However, such weightings could have been enabled by InferSent’s LSTM. 

Specifically, the input gate performs a weighted integration of the new GloVe input and the previous 

sentence-so-far output (recurrently fed-back). Thus, a combination of inhibitory weights on features of 

the sentence-so-far, and excitatory weights on the new GloVe input would zero out recurring features 

across words and emphasize novel unexpected information in the new input. 

 

Word order and thematic role assignment. The subject-verb-object word order of the English language is 

critical for understanding thematic role assignments (e.g. agent and patient) and thus sentence 

comprehension. Recent studies have provided evidence that agent and patient can be spatially 

distinguished in fMRI activation (Frankland and Green, 2015, Wang et al. 2016). InferSent likewise has 

some capacity to map words to different segments of sentence-level vectors. Indeed, relative word order 

is encoded on each iteration when the new GloVe input word is concatenated with the previous sentence-

so-far output (recurrently looped back). 

 

The current results have provided evidence that propositional sentence-level semantic representations 

are distributed throughout a cortical language network, rather than being localized within any particular 

brain region (e.g. Baron and Osherson 2011, Bemis and Pylkkänen, 2011, Westerlund and Pylkkänen 

2014, Zhang and Pylkkänen 2015, Frankland and Greene, 2015). This echoes Fedorenko et al. (2016) 

and Nelson et al. (2017) who revealed electrocorticographic signals associated with sentence 

construction arising concurrently in distributed brain regions, and Lyu et al. (2019) who detected 

contextualized noun representations in electro/magnetoencephalography recordings.  Results extend 

previous fMRI studies that have revealed distributed neural correlates of semantic features (Huth et al. 

2016, Anderson et al. 2017, Yang et al. 2017, Pereira et al. 2018, Anderson et al. 2019), syntax (Blank 

et al. 2016, Fedorenko et al. 2020), and words with different grammatical roles (Anderson et al. 2019a), 

but not whether activation reflected sentence-level meaning. Finally, our results complement work that 

has used cross-participant comparisons to reveal distributed neural correlates of narrative 

comprehension (Honey et al. 2012) and how temporal context is encoded (e.g. Chien and Honey, 2020), 

and also other studies that have begun to use deep network-based models to predict contextualized 

semantic responses in neural data  (Jain and Huth, 2018, Toneva and Wehbe 2019, Gauthier and Levy, 



2019, Sun et al. 2019, Schrimpf et al. 2020, Heilbron et al. 2020, Goldstein et al. 2020), but not revealed 

the distributed cortical encoding of propositional sentence-level meaning. 

 

Taken together with the above studies, the current results suggest that lateral temporal, inferior parietal, 

and inferior frontal cortices comprehensively encode propositional sentence representations that 

integrate across multiple words and semantic features. However, due to the slow sample rate of fMRI, 

the time course over which semantic representations arose in different regions remains unclear. Thus, 

we are unable to estimate whether semantic representations were locally assembled in a particular brain 

region such as the anterior temporal lobe and subsequently channeled to different cortical regions. Or, 

alternatively whether sentence-level representations were constructed in parallel across multiple 

interacting network hubs. Future work leveraging electrocorticography and 

electro/magnetoencephalography will be necessary to expose the spatiotemporal time course of 

semantic composition (e.g. Fedorenko et al. 2016, Lyu et al. 2019, Fyshe et al. 2019, Toneva and Wehbe 

2019, Lopopolo et al. 2020, Caucheteux and King, 2020, Heilbron et al. 2020, Goldstein et al. 2020). 

 

In follow up analyses we placed InferSent’s results into the context of two newer deep network 

approaches - ELMo and BERT. This was to find out how high performance in applied NLP translates to 

fMRI prediction, and whether the added complexity of the newer deep networks conferred a particular 

advantage here. The results were equivocal. There were mild differences in fMRI prediction accuracy 

between the three deep networks but they all yielded stronger results than the baselines. This might 

partially reflect representational similarities that the different approaches converged upon. Such putative 

similarities could reflect priors that are incidentally encoded by different deep network architectures 

irrespective of training (Conneau et al. 2018, Wieting and Kiela 2019), and/or that different semi-

supervised/supervised training paradigms produce similar representations. Irrespective, we consider 

each approach tested here to provide the basis for approximating propositional meaning because ELMo 

and BERT have both contributed to models breaking SNLI benchmarks 

(https://paperswithcode.com/sota/natural-language-inference-on-snli) and InferSent’s LSTM architecture 

and training were selected/optimized for SNLI.   

 

We are also careful to point out that results for different deep networks, and their biological plausibility 

may vary with the brain-imaging task scanned and with fine-tuned training on particular NLP tasks. For 

instance, architecturally, Transformers might better capture knowledge assimilation associated with 

reading a book when one can flip pages (and one’s attention) back and forth to integrate information 

across long-term dependencies. Conversely, recurrent networks could be more biologically plausible 

models of speech comprehension, where words are delivered in serial order (see also Merkx and Frank, 

2020). Training on next-word prediction could be particularly important for building biologically plausible 



models of both reading and speech comprehension (Schrimpf et al. 2020, Heilbron et al. 2020, Goldstein 

et al. 2020), given the extensive evidence that prediction underpins biological language comprehension 

(Kuperberg and Jaeger, 2016).  

 

The study has also emphasized the utility of incorporating supra-textual knowledge into semantic models 

to explain brain activation. This is in two respects. Firstly, in corroborating previous findings that modeling 

non-linguistic “experiential knowledge” (Anderson et al., 2013, Anderson et al. 2015, Bulat et al. 2017, 

Abnar et al. 2018, Wang et al. 2018, Anderson et al. 2019, Djokic et al. 2020) can help predict brain 

activation that cannot fully be explained by text-based language models. Secondly, by incorporating 

human “expert” knowledge on natural language inferences (Bowman et al. 2015) to supervise the 

InferSent training procedure. 

 

In conclusion, the current study has provided evidence that a distributed cortical network encodes 

propositional representations of sentence-level meaning. This suggests that unified, integrated 

representations of sentence meaning are locally encoded in fMRI within multiple brain regions rather than 

being confined to a particular site. The study has also demonstrated the utility of deep network 

approaches to capture components of semantic information that have yet to be explained by any other 

method. However, despite combining state-of-art computational and behavioral modeling methods, we 

have revealed that a substantial fraction of fMRI signal remains unexplained. In going forward, we 

contend that artificial deep neural network approaches that integrate multimodal information will play a 

vital role to play in explaining this biological signal. 

 

 

  



References 

Abnar S, Ahmed R, Mijnheer M, Zuidema W. (2018). Experiential, Distributional and Dependency-based 

Word Embeddings have Complementary Roles in Decoding Brain Activity. Proceedings of the 8th 

Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018), Salt Lake City, Utah, 

USA: Association for Computational Linguistics. pp 57–66. 

 

Anderson AJ, Bruni E, Bordignon U, Poesio M, Baroni M. (2013). Of words, eyes and brains: Correlating 

image-based distributional semantic models with neural representations of concepts. Proceedings of the 

Conference on Empirical Methods in Natural Language Processing (EMNLP 2013); Seattle, WA: 

Association for Computational Linguistics. pp. 1960–1970. 

 

Anderson AJ, Bruni E, Lopopolo A, Poesio M, Baroni M. (2015). Reading visually embodied meaning 

from the brain: visually grounded computational models decode visual-object mental imagery induced by 

written text. Neuroimage. 120:309–322. 

 

Anderson AJ, Zinszer BD, Raizada RD (2016) Representational similarity encoding for fMRI: pattern-

based synthesis to predict brain activity using stimulus-model-similarities. Neuroimage 128:44 –53. 

 

Anderson AJ, Binder JR, Fernandino L, Humphries CJ, Conant LL, Aguilar M, Wang X, Doko D, Raizada 

RDS. (2017). Predicting neural activity patterns associated with sentences using a neurobiologically 

motivated model of semantic representation. Cerebral Cortex. 27(9):4379-95. 

 

Anderson AJ, Kiela D, Clark S, Poesio M. (2017). Visually Grounded and Textual Semantic Models 

Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns. Transactions of the 

Association for Computational Linguistics. 5, 17-30. 

 

Anderson AJ, Lalor EC, Lin F, Binder JR, Fernandino L, Humphries CJ, Conant LL, Raizada RDS, Grimm 

S, Wang X. 2019a. Multiple regions of a cortical network commonly encode the meaning of words in 

multiple grammatical positions of read sentences. Cerebral Cortex. 29(6):2396-411. 

 

Anderson AJ, Binder JR, Fernandino L, Humphries CJ, Conant LL, Raizada, RDS, Lin F, Lalor EC. 2019b. 

An integrated neural decoder of linguistic and experiential meaning. Journal of Neuroscience 39 (45) 

8969-8987. 

 



Anderson AJ, McDermott K, Rooks B, Heffner KL, Dodell-Feder D, Lin, FV. (2020). Decoding individual 

identity from brain activity elicited in imagining common experiences. Nature Communications. DOI: 

10.1038/s41467-020-19630-y 

 

Baron SG, Osherson D. 2011. Evidence for conceptual combination in the left anterior temporal lobe. 

Neuroimage. 55:1847–1852. doi:10.1016/j.neuroimage.2011.01.066. 

 

Barsalou LW, Santos A, Simmons WK, Wilson CD. (2008). Language and simulation in conceptual 

processing. In: De Vega M, Glenberg AM, Graesser AC, editor. Symbols, embodiment, and meaning. 

Oxford: Oxford University Press. pp. 245–283. 

 

Bemis DK, Pylkkänen L. 2011. Simple composition: A magnetoencephalography investigation into the 

comprehension of minimal linguistic phrases. Journal of Neuroscience. 31(8):2801-14. 

 

Binder JR, Desai RH, Graves WW, Conant LL. (2009). Where is the semantic system? A critical review 

and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 19:2767–2796. 

 

Binder JR, Desai RH. (2011). The neurobiology of semantic memory. Trends Cogn Sci. 15(11):527–536. 

 

Binder JR, Conant LL, Humphries CJ, Fernandino L, Simons S, Aguilar M, Desai R. (2016). Toward a 

brain-based componential semantic representation. Cognitive neuropsychology 33 (3-4), 130-174. 

 

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach 

to multiple testing. Journal of the Royal statistical society: series B (Methodological). 57(1):289-300. 

 

Blank I, Balewski Z, Mahowald K, Fedorenko E. 2016. Syntactic processing is distributed across the 

language system. Neuroimage. 215(127):307-23. 

 

Bowman SR, Angeli G, Potts C, and Manning CD. 2015. A large annotated corpus for learning natural 

language inference. arXiv preprint arXiv:1508.05326. 

 

Bulat L, Clark S, Shutova E. 2017. Speaking, seeing, understanding: Correlating semantic models with 

conceptual representation in the brain. In Proceedings of the 2017 Conference on Empirical Methods in 

Natural Language Processing (EMNLP 2017) Copenhagen, Denmark. Association for Computational 

Linguistics. pp. 1092–1102. 

 



Caucheteux C, King JR. 2020. Language processing in brains and deep neural networks: computational 

convergence and its limits. Biorxiv doi: https://doi.org/10.1101/2020.07.03.186288 

 

Chang KM, Mitchell T, Just MA. 2011. Quantitative modeling of the neural representation of objects: how 

semantic feature norms can account for fMRI activation. NeuroImage. 56(2):716-27. 

 

Chien H-Y S, Honey CJ. 2020.  Constructing and Forgetting Temporal Context in the Human Cerebral 

Cortex Neuron. https://doi.org/10.1016/j.neuron.2020.02.013 

Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A. (2017). Supervised learning of universal sentence 

representations from natural language inference data. In Proceedings of the 2017 Conference on 

Empirical Methods in Natural Language Processing, pages 670–680, Copenhagen, Denmark. 

Association for Computational Linguistics. 

 

Conneau A, Kruszewski G, Lample G, Barrault L, Baroni M. 2018. What you can cram into a single $ 

&!#* vector: Probing sentence embeddings for linguistic properties. Proceedings of the 56th Annual 

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Victoria, 

Australia. Association for Computational Linguistics. pp. 2126-2136. 

 

Cox RW. (1996). AFNI: software for analysis and visualization of functional magnetic resonance 

neuroimages. Comput Biomed Res. 29:162–173. 

 

Deniz F, Nunez-Elizalde AO, Huth AG, Gallant JL. (2019). The representation of semantic information 

across human cerebral cortex during listening versus reading is invariant to stimulus modality. Journal of 

Neuroscience, 39(39), 7722-7736. 

 

Devereux BJ, Clarke A, Marouchos A, Tyler LK. (2013). Representational similarity analysis reveals 

commonalities and differences in the semantic processing of words and objects. Journal of Neuroscience, 

33(48), 18906-18916. 

 

Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for 

Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the 

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short 

Papers) 2019 Jun (pp. 4171-4186). 

 



Djokic VG, Maillard J, Bulat L, Shutova E. 2020. Decoding Brain Activity Associated with Literal and 

Metaphoric Sentence Comprehension using Distributional Semantic Models. Transactions of the 

Association for Computational Linguistics 8, 231-246 

 

Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. 2010. New method for 

fMRI investigations of language: defining ROIs functionally in individual subjects. Journal of 

neurophysiology. 104(2):1177-94. 

 

Fedorenko E, Thompson-Schill SL. 2014. Reworking the language network. Trends in cognitive sciences 

18 (3), 120-126. 

 

Fedorenko E, Scott TL, Brunner P, Coon WG, Pritchett B, Schalk G, Kanwisher N. 2016. Neural correlate 

of the construction of sentence meaning. Proceedings of the National Academy of Sciences 113 (41), 

E6256-E6262. 

 

Fedorenko E, Blank I, Siegelman M, Mineroff Z. 2020. Lack of selectivity for syntax relative to word 

meanings throughout the language network. bioRxiv. 2020 Jan 1:477851. 

 

Fernandino L, Humphries CJ, Conant LL, Seidenberg MS, Binder JR. 2016. Heteromodal cortical areas 

encode sensory-motor features of word meaning. Journal of Neuroscience. 21;36(38):9763-9. 

 

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein 

J, Kennedy D, et al. 2004. Automatically parcellating the human cerebral cortex. Cereb Cortex. 14:11–

22. 

 

Forster, K.I. (1970). Visual perception of rapidly presented word sequences of varying complexity. 

Perception & Psychophysics 8, 215-221. 

 

Frankland SM, Greene JD. 2015. An architecture for encoding sentence meaning in left mid-superior 

temporal cortex. Proc Natl Acad Sci USA. 112(37):11732-11737. doi:10.1073/pnas.1421236112 

 

Fyshe A, Sudre G, Wehbe L, Rafidi N, Mitchell TM. 2019. The lexical semantics of adjective–noun 

phrases in the human brain. Human brain mapping. 40(15):4457-69. 

 

Gauthier J, Levy RP. 2019. Linking artificial and human neural representations of language. Proceedings 

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International 



Joint Conference on Natural Language Processing. Hong Kong, China. Association for Computational 

Linguistics. pp 529–539, 

 

Glasgow K, Roos M, Haufler A, Chevillet M, Wolmetz, M, 2016. Evaluating semantic models with word-

sentence relatedness. arXiv:1603.07253 

 

Glenberg A. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary 

Reviews: Cognitive Science, 1(4), 586–596. 

 

Goldstein A, Zada Z, Buchnik E, Schain M, Price A, Aubrey B, Nastase SA, Feder A, Emanuel D, Cohen 

A, Jansen A. 2020. Thinking ahead: prediction in context as a keystone of language in humans and 

machines. bioRxiv. https://doi.org/10.1101/2020.12.02.403477 

 

Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural 

network architectures. Neural networks. 2005 Jul 1;18(5-6):602-10. 

 

Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, Hanke M, Ramadge PJ 

(2011) A common, high-dimensional model of the representational space in human ventral temporal 

cortex. Neuron 72:404 –416. 

 

de Heer WA, Huth AG, Griffiths TL, Gallant JL, Theunissen FE. (2017). The hierarchical cortical 

organization of human speech processing. 2017. J. Neurosci., 3267-3216. 

 

Heilbron M, Armeni K, Schoffelen J-M, Hagoort P, de Lange FP. 2020. A hierarchy of linguistic predictions 

during natural language comprehension. biorxiv https://doi.org/10.1101/2020.12.03.410399 

 

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural computation. 15;9(8):1735-80. 

 

Hoerl AE, Kennard RW. (1970) Ridge regression: biased estimation for nonorthogonal problems. 

Technometrics 12:55–67. 

 

Honey CJ, Thompson CR, Lerner Y, Hasson U. 2012. Not lost in translation: neural responses shared 

across languages. Journal of Neuroscience. 32(44):15277-83. 

 



Huth AG, Nishimoto S, Vu AT, Gallant JL. 2012. A continuous semantic space describes the 

representation of thousands of object and action categories across the human brain. Neuron. 

76(6):1210–1224. 

 

Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL. 2016 Natural speech reveals the semantic 

maps that tile human cerebral cortex. Nature. 532:453–458 

 

Jain S, Huth AG. 2018. Incorporating context into language encoding models for fMRI. In Proceedings of 

the 32nd International Conference on Neural Information Processing Systems 2018. Montréal, Canada. 

Curran Associates Inc. pp. 6629-6638. 

 

Just MA, Cherkassky VL, Aryal S, Mitchell TM. 2010. A neurosemantic theory of concrete noun 

representation based on the underlying brain codes. PloS one. 5(1):e8622. 

 

Just MA, Wang J, Cherkassky VL. 2017. Neural representations of the concepts in simple sentences: 

Concept activation prediction and context effect. NeuroImage (157):511–520. 

 

Kiela D, Clark S. (2014). A systematic study of semantic vector space model parameters. Proceedings 

of the 2ndWorkshop on Continuous Vector Space Models and their Compositionality (CVSC) at EACL, 

pp. 21–30. 

 

Kim Y, Jernite Y, Sontag D, Rush AM. 2016. Character-aware neural language models. In Proceedings 

of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, Arizona, USA. pp. 2741-2749. 

 

Landauer T, Dumais S. (1997). A solution to Plato's problem: The latent semantic analysis 

theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–240. 

 

Lau EF, Phillips C, Poeppel D. 2008. A cortical network for semantics: (de)constructing the N400. Nat 

Rev Neurosci. (9):920–933. 

 

Lopopolo A, Schoffelen JM, van den Bosch A, Willems, RM. 2020. Words in context: tracking context-

processing during language comprehension using computational language models and MEG. Biorxiv. 

https://doi.org/10.1101/2020.06.19.161190 

 

Lund K, Burgess C. 1996. Producing high-dimensional semantic spaces from lexical co-occurrence. 

Behavior research methods, instruments, & computers. 28(2):203-8. 



 

Lyu B, Choi HS, Marslen-Wilson WD, Clarke A, Randall B, Tyler LK. 2019. Neural dynamics of semantic 

composition. Proceedings of the National Academy of Sciences. 116(42):21318-27. 

 

Kriegeskorte N, Mur M, Bandettini P. (2008). Representational similarity analysis—Connecting the 

branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. 

 

Kuperberg GR, Jaeger TF. 2016. What do we mean by prediction in language comprehension?. 

Language, cognition and neuroscience. 31(1):32-59. 

 

Kutas M, Federmeier KD. 2011. Thirty years and counting: finding meaning in the N400 component of 

the event-related brain potential (ERP). Annual review of psychology. 62:621-47. 

 

Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. 2017. The neural and computational bases of 

semantic cognition. Nature Reviews Neuroscience. (18):42–55. 

 

Merkx D, Frank SL. 2020. Comparing Transformers and RNNs on predicting human sentence processing 

data. arXiv preprint arXiv:2005.09471. 

 

Mitchell J, Lapata M. 2010. Composition in Distributional Models of Semantics. Cognitive Science. 34:8, 

1388–1439. 

 

Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL, Mason RA, Just MA. 2008. Predicting 

human brain activity associated with the meaning of nouns. Science. 320:1191–1195. 

 

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector 

space. International Conference on Learning Representations (ICLR) Workshop, Scottsdale, AZ. 

Proc 16th Annual Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, New Orleans, Louisiana. 

 

Nelson MJ, Karoui IE, Giber, K, Yang X, Cohen L, Koopman H, Cash SS, Lionel Naccache L, Hale JT, 

Pallier C, and Dehaene S. 2017. Neurophysiological dynamics of phrase-structure building during 

sentence processing. Proc Natl Acad Sci USA.. E3669–E3678, doi: 10.1073/pnas.1701590114. 

 

Oldfield RC. (1971). The assessment and analysis of handedness: The Edinburgh Inventory.  

Neuropsychologia. (9):97-113. 



 

Pennington J, Socher R, Manning CD. (2014). GloVe: Global Vectors for Word Representation. In Proc. 

Conf. Emp. Meth. Nat. Lang. Proc. Doha, Qatar: Association for Computational Linguistics. pp 1532–

1543. 

 

Pereira F, Botvinick M, Detre G. 2013. Using Wikipedia to learn semantic feature representations of 

concrete concepts in neuroimaging experiments. Artif Intell. 194:240–252. 

 

Pereira F, Lou B, Pritchett B, Ritter S, Gershman S, Kanwisher N, Botvinick M, Fedorenko E. 2018. 

Toward a universal decoder of linguistic meaning from brain activation. Nature Communications 9 (963) 

 

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep contextualized word 

representations. In Proceedings of NAACL-HLT 2018 (pp. 2227-2237). 

 

Pulvermüller F. 2013. How neurons make meaning: brain mechanisms for embodied and abstract-

symbolic semantics. Trends in Cognitive Sciences. 17(9):458-470. 

 

Schrimpf M, Blank I, Tuckute G, Kauf C, Hosseini EA, Kanwisher N, Tenenbaum J, Fedorenko  E. 2020. 

Artificial Neural Networks Accurately Predict Language Processing in the Brain. Biorxiv 

https://doi.org/10.1101/2020.06.26.174482 

 

Subramanian S. Trischler A, Bengio Y, Pal, C. J. (2018). Learning general purpose distributed sentence 

representations via large scale multi-task learning. In Proceedings of the 2018 Inter- national Conference 

on Learning Representations (ICLR).  

 

Sun J, Wang S, Zhang J, Zong C. (2019). Towards sentence-level brain decoding with distributed 

representations. In Proceedings of the AAAI Conference on Artificial Intelligence 2019 Jul 17 (Vol. 33, 

pp. 7047-7054). 

 

Swinney DA. 1979. Lexical access during sentence comprehension: (Re)consideration of context effects. 

J Verb Learn Verb Behav. 18:645–659. 

 

Talairach J, Tournoux P. 1988. Co-planar stereotaxic atlas of the human brain. In: 3-Dimensional 

proportional system: an approach to cerebral imaging. New York: Thieme p. 122. 

 



Tanenhaus MK, Leiman JM, Seidenberg MS. 1979. Evidence for multiple stages in the processing of 

ambiguous words in syntactic contexts. J Verb Lear Verb Behav. 18:427–440. 

 

Till RE, Mross EF, Kintsch W. 1988. Time course of priming for associate and inference words in a 

discourse context. Mem Cogn. 16:283–298. 

 

Toneva M, Wehbe L. 2019. Interpreting and improving natural-language processing (in machines) with 

natural language-processing (in the brain). In Advances in Neural Information Processing Systems. 

Vancouver, Canada. Curran Associates Inc. pp. 14928-14938. 

 

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. 

Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing 

Systems (NIPS 2017), Long Beach, CA, USA. pp. 5998-6008. 

 

Wang J, Cherkassky VL, Yang Y, Chang KK, Vargas R, Diana N, Just MA. 2016. Identifying thematic 

roles from neural representations measured by functional magnetic resonance imaging. Cognitive 

Neuropsychology 33 (3-4), 257-264. 

 

Wang J, Cherkassky VL, Just MA. 2017. Predicting the brain activation pattern associated with the 

propositional content of a sentence: modeling neural representations of events and states. Human brain 

mapping. 38(10):4865-81. 

 

Wang X, Wu W, Ling Z, Xu Y, Fang Y, Wang X, Binder JR, Men W, Gao JH, Bi Y. 2018. Organizational 

principles of abstract words in the human brain. Cerebral Cortex. 28(12):4305-18. 

 

Wehbe L, Murphy B, Talukdar P, Fyshe A, Ramdas A, Mitchell T. 2014. Simultaneously uncovering the 

patterns of brain regions involved in different story reading subprocesses. PloS one. 9(11), e11257. 

 

Wieting J and Kiela D. 2019. No training required: Exploring random encoders for sentence classification. 

In Proceedings of International Conference on Learning Representations (ICLR), New Orleans, 

Louisiana, United States.  

 

Westerlund M, Pylkkänen L. 2014. The role of the left anterior temporal lobe in semantic composition vs. 

semantic memory. Neuropsychologia. 57:59–70. doi:10.1016/j.neuropsychologia.2014.03.001. 

 



Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, 

Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T, Gugger S, Drame M, Lhoest 

Q, Rush AM. 2019. HuggingFace's Transformers: State-of-the-art Natural Language Processing. 

arXiv:1910.03771. 

 

Yang Y, Wang J, Bailer C, Cherkassky V, Just MA. (2017). Commonality of neural representations of 

sentences across languages: Predicting brain activation during Portuguese sentence comprehension 

using an English-based model of brain function. NeuroImage 146:658-666. 

 

Zhang L, Pylkkänen L. 2015. The interplay of composition and concept specificity in the left anterior 

temporal lobe: An MEG study. Neuroimage. 111, 228-240. doi:10.1016/j.neuroimage.2015.02.028. 



 

Figure 1. Overview of our primary analysis. The fMRI sentence reading experimental protocol is 

illustrated top left. A schematic illustrating how InferSent forms sentence-level representations from 

context independent word-level semantic representations (GloVe) is at the top right. Baseline models, 

that formed sentences by combining GloVe vectors according to grammatical rules, concatenation or 

averaging are illustrated in the bottom left. The ridge regression approach used to map the sentence 

models to predict fMRI activation is illustrated at the bottom right. In the diagram this is illustrated for only 

the BoW(GloVe) vector, however mappings were estimated in the same way for all models. The 

procedure used to evaluate model-based predictions is illustrated later in Figure 4. 

 

  



 

 
 
Figure 2. InferSent algorithm encoding unified propositional sentence representations. Whilst the 

Entailment classifier operates on two sentences (S1 and S2) the encoding of only a single sentence is 

illustrated above to simplify display. In practice, the second sentence would be encoded separately, in 

precisely the same way as illustrated above for the first sentence. Once the two sentences have been 

encoded, they are combined and integrated, and the composite representation is evaluated to estimate 

whether the sentences entailed one another as opposed to being contradictory or neutral. 

 

  



 
Figure 3. Representational Similarity Analysis revealing the inter-relationship between the 
different sentence models tested.  Each entry in the matrix corresponds to an RSA between two 

models. To compute RSA, inter-sentence Pearson correlation matrices were constructed for each model. 

To compare models, the below diagonal correlation matrix triangles were extracted from each matrix and 

vectorized. Spearman correlation was then computed between vectorized triangles corresponding to 

each model pair. Statistical significance was evaluated by permutation testing: The order of the sentences 

for one model was randomly shuffled, and the rows and columns of the respective correlation matrix were 

rearranged according to the shuffled order. The correlation between the vectorized matrix triangle of the 

shuffled matrix and the triangle of the other unshuffled model matrix was then computed. This was 

repeated 1000 times and a p-value was computed as the fraction of times that correlation coefficients 

associated with the shuffled sentences exceeded the original unpermuted correlation coefficient. All 

correlations displayed were highly significant p=0.001. BERT L12 was selected for display post hoc 

because it yielded strong predictions in later analyses (Figure 9). 



 
 
Figure 4. Evaluation of predicted fMRI sentences. Predictions were evaluated using two metrics. The 

rank metric (left) provided a measure of how accurately the predicted fMRI representation reflected the 

original sentence recording, comparative to recordings of all of the other 239 mismatched sentences. 

The semi-partial rank metric (right) controlled for the predictions made by other models in evaluation. 

Specifically, before evaluating the prediction made by one model (InferSent above), the predictions made 

by other model(s) are regressed out from InferSent’s prediction (in the above illustration BoW(GloVe) is 

regressed out). The residual is then compared to the original fMRI activation, and ranked relative to the 

other sentences. Both rank and semi-partial rank metrics were normalized to the range 0 to 1. For 

instance, if the score was 229, the normalized score was 0.95, computed as (229-1)/239. 

 

  



 

Figure 5. Using cross-participant similarity-based encoding to predict the fMRI representation of 
a sentence for participant 1, from participant 2’s data. This approach was used to estimate an upper 

bound on prediction accuracy and reveal signal that had not been predicted by the models (when the 

weight vectors W were averaged across participants). 

  



 
 
Figure 6. fMRI activation patterns reflect propositional sentence-level semantics encoded by 
InferSent. Results correspond to the 500 most stable voxels per participant, reselected across the cortex 

at each cross-validation iteration (illustrated right). The critical results are in the left column. The top left 

bar plot reveals that normalized rank scores associated with InferSent were greater than each of the 

other models. The top right bar plot indicates that InferSent predicted components of fMRI activation that 

could not be predicted by the other models. Bar heights are mean scores across the 14 participants and 

error bars are SEM. The Char stats and Word overlay models were included as controls in all semi-partial 

rank score analyses but are not illustrated to simplify the display and are later included in Figure 9. A 

complete listing of statistical test values for the two-tailed signed rank tests (top left) and for one sample 

signed rank tests (bottom left) is in Extended Data Figure 6-1 and 6-2 respectively. 

 

  



 
 
Figure 7. Regions of temporal, inferior parietal cortex and inferior frontal cortex were more 
accurately predicted by InferSent than the four baseline models. Bar heights illustrate the mean 

normalized rank scores across the 14 participants and error bars are SEM. The anatomical location of 

the ROIs is illustrated at the top (note 50 voxels were selected within each ROI for analysis at each cross-

validation iteration, see Table 1). InferSent yielded significantly greater normalized rank scores than all 

four of the baseline models in 9/16 ROIs (marked by * above). A complete listing of statistical test values 

for the two-tailed signed rank tests used to compare InferSent to rank scores derived from the baseline 

models is in Extended Data Figure 7-1. 

 



 
Figure 8. InferSent made independent contributions to predicting fMRI activation within temporal, 
inferior parietal and inferior frontal cortex. Bar heights illustrate mean semi-partial rank scores across 

the 14 participants and error bars are SEM. The anatomical location of the ROIs is illustrated at the top 

(note 50 voxels were selected within each ROI for analysis at each cross-validation iteration, see Table 
1). InferSent predicted components of fMRI sentence representations that were not predicted by the other 

models in 12/16 ROIs (marked by * above). The Char stats and Word overlay models were included as 

controls in all of the semi-partial analyses, but the corresponding rank scores are not illustrated here to 

simplify display. A complete listing of statistical test values for the one tailed sample signed rank tests 

used to test semi-partial rank scores against chance-level is in Extended Data Figure 8-1. 



 
Figure 9. InferSent, ELMo and BERT yielded similar accuracy predictions, and the experiential 
attribute model and cross-participant encoding revealed unpredicted fMRI signal. Results 

correspond to the 500 most stable voxels per participant (top left). The bottom left plot displays 

normalized rank scores obtained for the full complement of predictive approaches excluding BERT. Mean 

rank scores for BERT are listed at the top right to simplify display (because BERT has 24 layers). Semi-

partial rank scores for a selection of models are illustrated in the bar plots to the right.  The upper right 

plot illustrates semi-partial scores when the cross-participant encoding approach was excluded. The 

lower right plot illustrates comparative semi-partial scores when cross-participant encoding was included 

and semi-partial scores for the models were expected to dwindle towards 0.5 (because the cross-

participant approach in principle accounts for group-level commonalities in neural signal). Bar heights 

and error bars are the mean and SEM respectively, circles are individual participants. A complete listing 

of statistical test values for the two-tailed signed rank tests (left bar plot) is in Extended Data Figure 9-
1. A complete listing of test values for the one sample signed rank tests in the top and bottom right bar 

plots is in Extended Data Figure 9-2 and 9-3 respectively.  



Table 1. Neuroanatomical regions contributing to the language network ROI analyses. Each entry 

displays the mean±SD (14 participants) no. stable voxels within each language network ROI that 

contributed to analyses. For example, within LROI 1, on average 112 voxels contributed to the analysis 

of each participant. Anatomical labels (Destrieux atlas) and corresponding percentages indicate the mean 

percentage of times (across 14 participants) that a selected voxel belonged to that anatomical region. 

For example, within LROI 1, 37.2% of voxels selected were from left superior temporal sulcus 

(ctx_lh_S_temporal_sup) when pooling across all cross-validation iterations and participants. 

 

Table 2. Mean±SD Normalized rank score listings for the visual appearance models, to support Figure 
7. Scores for InferSent(GloVe) are illustrated in Figure 7 and are provided again here as a reference 

point. Scores for Char stats and Word overlay are quite high throughout the language network. This 

presumably reflects orthographic information that is distributed across the cortex as well as spurious 

correlations with the semantic models observed in Figure 3. 

 


